

Artificial

Intettigence

CrossCBR:Cross-view Contrastive Learning for Bundle Recommendation

Yunshan Ma Sea-NExT Joint Lab & National University of Singapore yunshan.ma@u.nus.edu

> Xiang Wang University of Science and Technology of China xiangwang1223@gmail.com

Yingzhi He Sea-NExT Joint Lab & National University of Singapore heyingzhi@u.nus.edu

An Zhang* Sea-NExT Joint Lab & National University of Singapore an_zhang@nus.edu.sg

Tat-Seng Chua Sea-NExT Joint Lab & National University of Singapore dcscts@nus.edu.sg

— 2022

https://github.com/mysbupt/CrossCBR

Chongqing University of ATA Advanced Technique of Artificial Intelligence

Artificial

1.Introduction

2.Method

3.Experiments



Introduction

The cooperative association between these two views (Bundle view, Item view) has been loosely modeled or even overlooked in existing works.

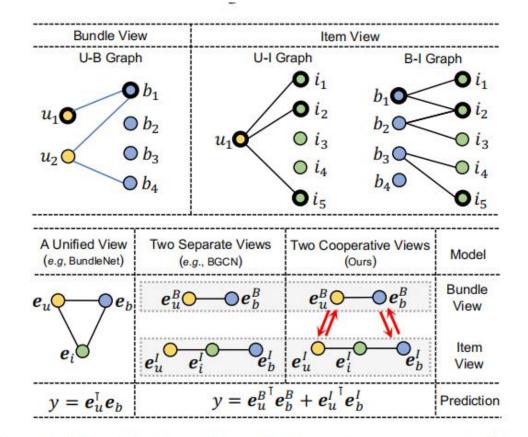
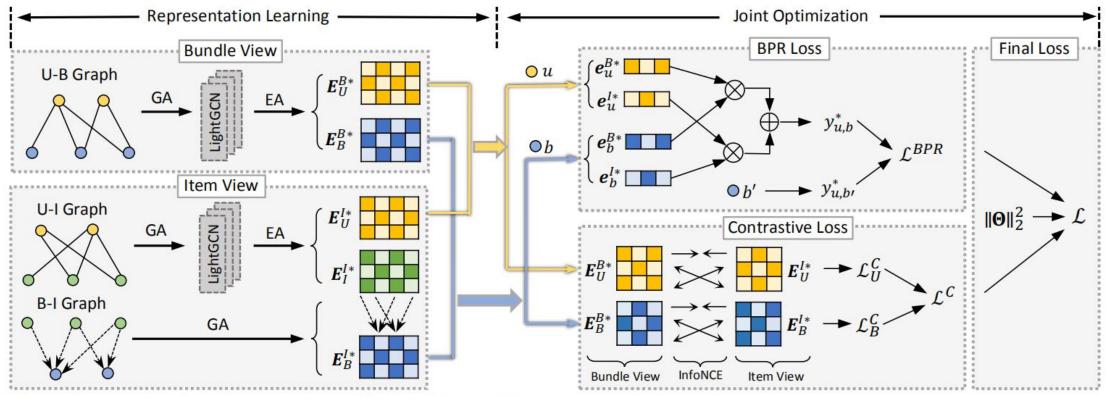


Figure 1: Top: The bundle and item views presented in the U-B, U-I and B-I graphs. Bottom: Our work models the cooperative association between views, where the superscripts *B* and *I* denote the bundle and item view, and the subscripts *u*, *b*, and *i* stand for the user, bundle, and item.



Ouser Oitem Obundle — interaction ----→ affiliation GA: Graph Augmentation EA: Embedding Augmentation

Figure 2: The overall framework of CrossCBR consists of two parts: (1) representation learning for the two views of users and bundles and (2) the joint optimization of the BPR loss \mathcal{L}^{BPR} and contrastive loss \mathcal{L}^{C} .

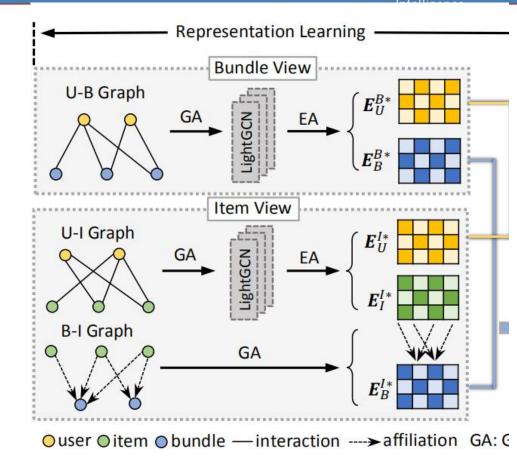
Problem Definition

a set of users $\mathcal{U} = \{u_1, u_2, \cdots, u_M\}$ a set of bundles $\mathcal{B} = \{b_1, b_2, \cdots, b_N\}$ a set of items $\mathcal{I} = \{i_1, i_2, \cdots, i_O\}$

$$X_{M \times N} = \{x_{ub} | u \in \mathcal{U}, b \in \mathcal{B}\}$$
$$Y_{M \times O} = \{y_{ui} | u \in \mathcal{U}, i \in I\}$$
$$Z_{N \times O} = \{z_{bi} | b \in \mathcal{B}, i \in I\}$$

$$\begin{cases} \mathbf{e}_{u}^{B(k)} = \sum_{b \in \mathcal{N}_{u}} \frac{1}{\sqrt{|\mathcal{N}_{u}|}\sqrt{|\mathcal{N}_{b}|}} \mathbf{e}_{b}^{B(k-1)}, \\ \mathbf{e}_{b}^{B(k)} = \sum_{u \in \mathcal{N}_{b}} \frac{1}{\sqrt{|\mathcal{N}_{b}|}\sqrt{|\mathcal{N}_{u}|}} \mathbf{e}_{u}^{B(k-1)}, \end{cases}$$

(1)



$$e_u^{B*} = \sum_{k=0}^{K} e_u^{B(k)}, \quad e_b^{B*} = \sum_{k=0}^{K} e_b^{B(k)}.$$
 (2)

$$\begin{cases} \mathbf{e}_{u}^{I(k)} = \sum_{i \in \mathcal{N}_{u}} \frac{1}{\sqrt{|\mathcal{N}_{u}|}\sqrt{|\mathcal{N}_{i}|}} \mathbf{e}_{i}^{I(k-1)}, \\ \mathbf{e}_{i}^{I(k)} = \sum_{u \in \mathcal{N}_{i}} \frac{1}{\sqrt{|\mathcal{N}_{i}|}\sqrt{|\mathcal{N}_{u}|}} \mathbf{e}_{u}^{I(k-1)}, \end{cases}$$

$$\mathbf{e}_{u}^{I*} = \sum_{k=0}^{K} \mathbf{e}_{u}^{I(k)}, \quad \mathbf{e}_{i}^{I*} = \sum_{k=0}^{K} \mathbf{e}_{i}^{I(k)},$$
 (4)

(3)

(5)

$$\mathbf{e}_b^{I*} = \frac{1}{|\mathcal{N}_b|} \sum_{i \in \mathcal{N}_b} \mathbf{e}_i^{I*},$$

Representation Learning Bundle View U-B Graph E_U^{B*} LightGCN GA EA E_B^{B*} **Item View** U-I Graph \boldsymbol{E}_{U}^{I*} LightGCN GA EA E_I^{I*} **B-I Graph** GA 0 \boldsymbol{E}_B^{I*} Ouser Oitem Obundle — interaction ----> affiliation GA: €

 $\mathcal{L}^C = \frac{1}{2}(\mathcal{L}_U^C + \mathcal{L}_B^C).$

 $(u,b,b') \in O$

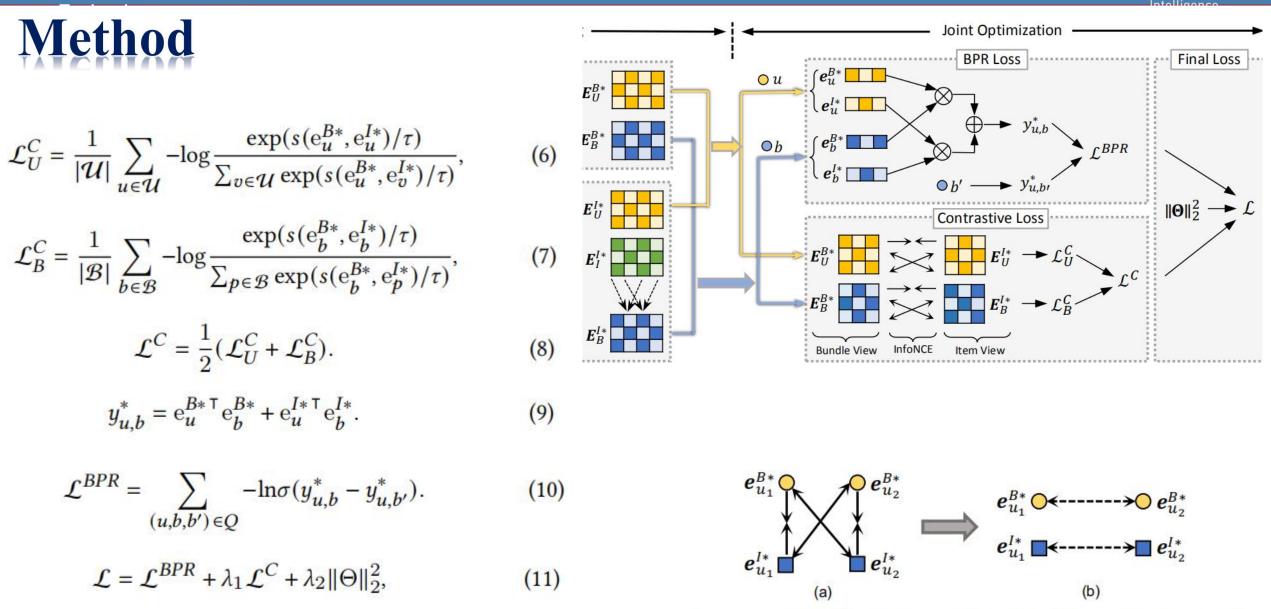


Figure 3: The illustration of the direct (a) and indirect (b) effects of the cross-view contrastive loss.

Dataset	#U	#I	#B	#U-I	#U-B	#Avg.I/B
Youshu	8,039	32,770	4,771	138,515	51,377	37.03
NetEase	18,528	123,628	22,864	1,128,065	302,303	77.80
iFashion	53,897	27,694	42,563	2,290,645	1,679,708	3.86

Table 1: Dataset Statistics.

Experiments

Table 2: The overall performance comparison, where Rec is short of Recall. Note that the improvement achieved by CrossCBR is significant (*p*-value $\ll 0.05$).

Model	Youshu				NetEase			iFashion				
	Rec@20	NDCG@20	Rec@40	NDCG@40	Rec@20	NDCG@20	Rec@40	NDCG@40	Rec@20	NDCG@20	Rec@40	NDCG@40
MFBPR	0.1959	0.1117	0.2735	0.1320	0.0355	0.0181	0.0600	0.0246	0.0752	0.0542	0.1162	0.0687
LightGCN	0.2286	0.1344	0.3190	0.1592	0.0496	0.0254	0.0795	0.0334	0.0837	0.0612	0.1284	0.0770
SGL	0.2568	0.1527	0.3537	0.1790	0.0687	0.0368	0.1058	0.0467	0.0933	0.0690	0.1389	0.0851
DAM	0.2082	0.1198	0.2890	0.1418	0.0411	0.0210	0.0690	0.0281	0.0629	0.0450	0.0995	0.0579
BundleNet	0.1895	0.1125	0.2675	0.1335	0.0391	0.0201	0.0661	0.0271	0.0626	0.0447	0.0986	0.0574
BGCN	0.2347	0.1345	0.3248	0.1593	0.0491	0.0258	0.0829	0.0346	0.0733	0.0531	0.1128	0.0671
CrossCBR	0.2813	0.1668	0.3785	0.1938	0.0842	0.0457	0.1264	0.0569	0.1173	0.0895	0.1699	0.1080
%Improv.	9.57	9.26	7.02	8.28	22.57	24.33	19.48	21.96	25.76	29.63	22.33	26.85

Experiments

Table 4: The cross-view alignment and dispersion analysis of the representations. A denotes *Alignment*; D denotes *Dispersion*; superscripts (C, B, I) denote the cross, bundle, and item view; subscripts (U, B) stand for users and bundles.

Metrics	NetEa	ise	iFashion			
	CrossCBR-CL	CrossCBR	CrossCBR-CL	CrossCBR		
A_U^C	0.638	0.932	0.878	0.950		
\mathbf{D}_U^B	0.313	0.049	0.331	0.014		
\mathbf{D}^{I}_{U}	0.044	0.004	0.193	0.004		
\mathbf{A}_B^C	0.351	0.632	0.635	0.910		
\mathbf{A}_B^C \mathbf{D}_B^B	0.040	0.042	0.052	0.033		
\mathbf{D}_B^I	0.075	0.016	0.011	0.030		

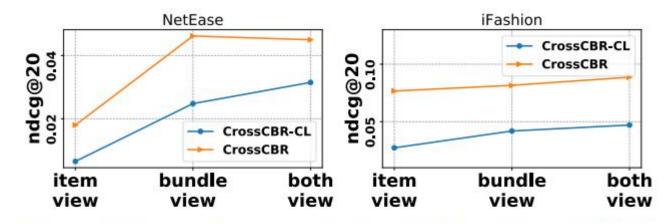


Figure 4: The performance of CrossCBR and CrossCBR-CL w.r.t. predictions based on different views.

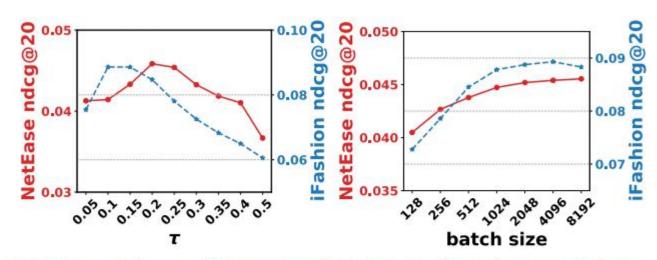


Figure 5: The performance (NDCG@20) variance of Cross-CBR w.r.t. the temperature τ and the batch size on both datasets of NetEase and iFashion.

Table 5: The statistics of one-epoch training time (seconds) for CrossCBR and baselines on different devices, where the "Cr" is short of "CrossCBR".

Device	Dataset	BGCN	Cr-CL	Cr_OP	Cr+SC	Cr+BB
Titan XP	NetEase	32.05	6.80	7.04	7.27	28.02
	iFashion	63.47	46.05	46.74	47.61	56.42
Titan V	NetEase	20.76	4.67	5.09	5.48	18.59
	iFashion	38.76	29.48	30.02	30.31	35.01